Progressing Adaptive Vehicle Control Architecture

Aurora Flight Sciences is progressing its FALCON control architecture for Phase 1 of DARPA’s LINC program, aiming to maintain safe USV operation in unpredictable maritime conditions By Abi Wylie / 02 Aug 2024

Control Stations

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Progressing Adaptive Vehicle Control Architecture - an image of a catamaran-type USV in the water in front of a city.
Follow OS&T

Aurora Flight Sciences, a Boeing company, is advancing its “Fast Adaptation and Learning for Control Online” (FALCON) control architecture for Phase 1 of DARPA’s Learning Introspective Control (LINC) program. 

The control architecture enables vehicles, in this case uncrewed surface vessels (USVs), to adapt their control laws in real time and maintain safe operation in unpredicted conditions.

Aurora, teamed with the Massachusetts Institute of Technology (MIT) Aerospace Controls Laboratory (ACL) and the MIT Marine Autonomy Laboratory (PavLab), had been testing its adaptive control architecture on 1.5-meter-long, uncrewed surface vessels (USV). Moving into Phase 1 of the LINC program, the team is now testing on a larger, 5-meter-long (16 ft) USV.

The team is focused on testing various simulated scenarios. For example, in a relative station keeping scenario, the adaptive control system works to maintain a consistent location relative to another vessel to allow the delivery of items from one vessel to the next, also known as underway replenishment (UNREP). 

In each scenario, the USV, with Aurora’s adaptive control technology, must successfully complete the mission while overcoming disturbances such as wind loading, thruster failure, and Venturi effects. The program also aims to improve on-board crane stabilization for safer and more precise crane operations at sea.

When the control system adapts its control laws in real time, and in unpredicted conditions, the vessel acts more reliably, which builds trust with human operators and improves the performance of the human-machine team. Adaptive control algorithms continuously improve performance and safety, without the long-lead times and system updates of conventional control systems.

As part of Phase 1, the Aurora and MIT team will perform at four DARPA LINC demonstration events, one approximately every six months, beginning later this year. Sandia National Laboratories is supporting the test events for LINC, providing opportunities for collaboration on test definition, metrics, and infrastructure.

The team has already begun testing on the Charles River in Boston, Massachusetts in preparation for the first Phase 1 demonstration. Looking farther ahead, the team plans to continue to advance to larger test platforms, such as a 24-ft, manned vessel.

Graham Drozeski, chief technology officer at Aurora Flight Sciences, said, “Collaboration between experts at DARPA, Sandia, MIT, and the Navy has propelled development forward. Together, we are advancing technology that can increase efficiency and safety of operations for land, air, and sea vehicles.”

Posted by Abi Wylie Edited by Abigail Wylie, Editor and Copywriter experienced in digital media with a keen interest in ocean science technology. Connect

Latest Articles

Real-Time Vibration Analysis Embedded in SBG Systems IMU

SBG Systems’ IMU now features built-in vibration monitoring, delivering real-time analysis to enhance accuracy, detect resonance, and support design, testing, and structural monitoring

Nov 19, 2025
Kraken Robotics Forms Reseller Partnership to Expand Access to Subsea Sonar Technology

Kraken Robotics has appointed BlueZone Group as an authorized reseller of its SAS and KATFISH platform, offering high-resolution underwater imaging, bathymetric mapping, and rapid data collection for defense and commercial surveys in Australia and New Zealand

Nov 19, 2025
Monitoring Marine Environments with Pro-Oceanus Dissolved Gas Sensors

Discover how Pro-Oceanus Systems’ advanced sensors help explore the oceans, measure dissolved gases, and uncover critical insights into marine and climate processes

Nov 18, 2025
Strategic Partnership to Deliver High-Resolution Deep-Sea Seafloor Intelligence & Insights

PlanBlue and Orpheus Ocean have collaborated to integrate advanced AI-driven imaging with autonomous underwater vehicles, enabling enhanced monitoring and analysis of critical deep-sea environments

Nov 17, 2025
FarSounder Integration Delivers Real-Time Seafloor & Obstacle Detection to SYNAPSIS Users

FarSounder has integrated its Argos 3D Forward Looking Sonar with Anschütz’s SYNAPSIS navigation platform, bringing real-time subsurface insights directly into the (W)ECDIS NX interface

Nov 17, 2025
Underwater Optical Communication Showcases 5.2 Gbps Transmission for Marine Applications

Kyocera has demonstrated a high-speed Underwater Wireless Optical Communication (UWOC) technology capable of transmitting data at 5.2 Gbps, enabling real-time, large-volume data exchange for underwater vehicles and ocean exploration

Nov 14, 2025

Featured Content

FarSounder Integration Delivers Real-Time Seafloor & Obstacle Detection to SYNAPSIS Users

FarSounder has integrated its Argos 3D Forward Looking Sonar with Anschütz’s SYNAPSIS navigation platform, bringing real-time subsurface insights directly into the (W)ECDIS NX interface

Nov 17, 2025
Boxfish ROV Captures Marine Research Footage for Upcoming Premiere

Scientists from the University of Tasmania used a custom Boxfish ROV to survey Beagle Marine Park, capturing underwater footage premiering on YouTube this November

Nov 12, 2025
SubC Imaging Observatory Camera Systems Support Long-Term Ocean Observation

SubC Imaging’s Observatory Camera Systems capture detailed subsea imagery for cabled ocean observatories, enabling continuous observation and long-term marine environmental studies

Nov 11, 2025