Hopper Drone Aims to Transform Maritime Missions

The small, autonomous Hopper UAV can operate at sea for an extended period and support a wide range of operations, from defense to marine biology to meteorology, and beyond By Abi Wylie / 19 Feb 2024

Connect with Leading Marine Technology Innovators

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Hopper Drone Aims to Transform Maritime Missions
Follow OS&T

MITRE has partnered with the U.S. Navy to develop an autonomous, small, low-cost UAV with exciting potential in the maritime domain. 

The drone can operate at sea for an extended period and support a wide range of operations, from defense to marine biology to meteorology, and beyond.

How does a small drone launched from San Diego get all the way to Hawaii without human intervention? It “hops” across the ocean for weeks—potentially months—at a time, recharging via solar power all on its own.

MITRE’s Hopper Uncrewed Aerial Vehicle (UAV) (a.k.a. drone) prototype, developed in collaboration with the Office of Naval Research (ONR), offers a small, intelligent, autonomous aerial system for maritime environments. 

Beyond U.S. Navy campaigns, these include non-military missions like search and rescue, monitoring for illicit activity (e.g., illegal fishing), and detecting meteorological events.

When ONR asked MITRE to help develop the intelligence, surveillance, reconnaissance-capable platform, it delivered a tall order: a cost-effective system that could function autonomously across dynamic ocean environments, carry a range of lower-power passive sensors, and use commercial electronic systems. MITRE engineers reportedly designed and fabricated the prototype in less than 24 months.

Hopper made its public debut in November at the Office of Science and Technology Policy’s “American Possibilities: A White House Demo Day.” Of the 45 scientific and technological innovations at the event, Hopper was one of eight connected to national security. 

Deputy Secretary of Defense Kathleen Hicks said; “To stay ahead, we’re going to create a new state of the art…leveraging attritable, autonomous systems in all domains—which are less expensive, put fewer people in the line of fire, and can be changed, updated, or improved with substantially shorter lead times.”

Though in its early stages, Hopper demonstrates strong promise to meet this state-of-art criteria. The platform evolved out of the National Security Engineering Center, the federally funded R&D center MITRE operates for Department of Defense. 

The MITRE-ONR team designed the system using computer-aided design (CAD) and advanced simulation software. This allowed them to rapidly iterate on various elements and produce the UAV’s airframe largely through advanced but low-cost techniques such as 3D printing. The design includes small commercial solar cells on the wings’ surface to allow the system to regenerate power while in flight and at rest.

“Swarming” Brings Power in Numbers

The MITRE-ONR team also brought in fresh perspective, working with students from the U.S. Naval Academy. The midshipmen contributed to Hopper’s design, providing key insights from their operations research Capstone project. As leaders of the future maritime battle space, the students have a vested interest in advancing such prototypes.

“This technology works primarily to augment existing maritime surveillance platforms,” said Conor Mahoney, MITRE’s expeditionary group leader. “Where normally you’d have to risk a crewed asset or an expensive uncrewed asset to maintain cognizance over a wide ocean area, Hopper can do so at a fraction of the cost—and free up those other assets.”

Moreover, Hopper demonstrates strength in numbers, with multiple systems operating as a team, or “swarm.” The swarm can cover large areas and collectively direct its elements to maneuver around designated ocean areas. This allows swarms of Hoppers to remain on station when ocean currents, waves, or winds might otherwise push them off course.

These versatile systems could fulfill myriad missions, from signals monitoring to tsunami warning to marine-life biological research, and more. Hopper’s only limitations lie in payload size and power requirements. 

The MITRE team is experimenting with integrating miniature radios and satellite transceivers to enable the UAV to communicate from maritime environments anywhere in the world.

With its unique capabilities, this small platform is poised to make a big impact in both defense and civil applications. Mahoney continued; “We’re working to evolve Hopper with expanded payload capacity, longer flight duration, and shorter times between recharges—to create an even more powerful platform.”

Posted by Abi Wylie Edited by Abigail Wylie, Editor and Copywriter experienced in digital media with a keen interest in ocean science technology. Connect & Contact

Latest Articles

Advanced Navigation Integration Enhances Side Scan Sonar Precision

Klein Marine Systems has selected Exail’s navigation technology to enhance the precision and reliability of its 5900 Side Scan Sonar system

May 02, 2025
Uncrewed Surface Vessel Employs Acoustic Tech for Real-Time Marine Mammal Monitoring

A collaboration between JASCO and SeaTrac is set to enhance real-time marine mammal monitoring using autonomous, energy-efficient surface vehicles

May 02, 2025
Profile Spotlight: Cambridge Pixel’s Radar & Sensor Data Solutions for Maritime & Offshore Operations

Cambridge Pixel is showcasing its advanced radar, sensor, and tracking technologies on OST, providing mission-critical solutions for maritime and offshore operations, including surveillance, asset protection, and USV sensor processing

May 02, 2025
Advanced Multibeam Sonar Technology Expands Capabilities in Offshore & Energy Sectors

Oceanscan Singapore expands its global rental fleet with the latest NORBIT multibeam sonar systems, enhancing survey capabilities for energy and offshore markets

May 01, 2025
AGISTAR Unveils Compact Remote-Controlled Motor for Inflatable Boats

AGISTAR has unveiled the OXR-T100, a compact, remote-controlled electric motor engineered for inflatable boats, delivering quiet, eco-friendly performance across demanding marine environments

May 01, 2025
AXYS Technologies MetOcean Observation Networks

AXYS Technologies supplies high-precision MetOcean data solutions that support marine safety, scientific research, environmental monitoring, and policy development across more than 80 countries

Apr 30, 2025

Featured Content

Advanced Multibeam Sonar Technology Expands Capabilities in Offshore & Energy Sectors

Oceanscan Singapore expands its global rental fleet with the latest NORBIT multibeam sonar systems, enhancing survey capabilities for energy and offshore markets

May 01, 2025
D-2 Ultra Low Power CTD Integrated into WHOI Arctic Research

D-2 Inc.’s advanced CTD sensor supports WHOI’s Arctic climate research, enhancing data precision in the Ice Tethered Profiler program’s latest deployments

Apr 30, 2025
Case Study: Impact Subsea Altimeter Supports Antarctic Science

Impact Subsea's ISA500 underwater altimeter plays a key role in the Icefin AUV as it collects vital data, passing through narrow boreholes drilled into Antarctic ice shelves

Apr 23, 2025