BPRs Deployed to Measure Global Ocean Currents

Two BPRs have been placed thousands of meters below the sea surface where they will record sea surface height to the nearest centimeter By Abi Wylie / 17 Nov 2023

Underwater Pressure Sensors

Discover cutting-edge solutions from 5 leading global suppliers
SUPPLIER SPOTLIGHT
BPRs Deployed to Measure Global Ocean Currents
Follow OS&T

Marine scientists have deployed two Sonardyne FETCH AZA bottom pressure recorders (BPRs) on either side of the Atlantic Ocean to measure the strength of global ocean currents that drive much of the Earth’s climate.

The Atlantic Meridional Overturning Circulation (AMOC) is a large system of ocean currents that transports warm surface waters from the tropics northward towards the subpolar and Arctic regions. 

There, the waters cool, become denser and sink before returning southward at depth. In doing so, this vast ‘conveyor belt’ movement of water is a major factor in controlling global heat distribution, regional sea level changes, the ocean’s absorption of carbon and European weather.

To measure the AMOC’s impact on our changing climate, the Scottish Association for Marine Science (SAMS) in Oban has deployed the two deep-sea BPRs, one in the north-east Atlantic and one in the Labrador Sea, to record regular changes in sea surface height.

The two BPRs have been placed thousands of meters below the sea surface where they will record sea surface height to the nearest centimeter, giving the researchers a detailed comparison between the two locations. 

Deployed for up to 10 years, this will allow them to measure changes in the speed and strength of the AMOC, which will provide crucial data to inform climate predictions.

The north-east Atlantic instrument was deployed from the RRS James Cook during the Overturning in the Subpolar North Atlantic Programme (OSNAP) research cruise, jointly led by SAMS and the National Oceanography Centre (NOC) in August. 

The western instrument was deployed by SAMS oceanographer Dr Sam Jones during a cruise on board the RV Meteor, led by the German marine institute GEOMAR in September.

The east side of the Atlantic Ocean is typically around 20 centimeters higher than the west side but the flow of the water does not go east to west, as the opposing force of the Coriolis effect from the rotating Earth causes a circular flow in a general south to north movement.

The AMOC transports roughly 1.25 Peta (10^15) Watts of energy from the Tropics towards the subpolar and Arctic regions – more than 60 times the present rate of world energy consumption. Despite being so influential in our climate, it has only been continuously measured for 19 years, limiting our long-term understanding of its relation to climate.

The data gathered can be transmitted wirelessly through the water to a ship or even an uncrewed platform, without the need to recover the BPRs.

OSNAP is now six months into gathering data from both sides of the Atlantic and to mark this milestone Sonardyne and SAMS have released a video – Understanding the AMOC –  explaining the effect of ocean currents on climate and the importance of the program in more detail.

“This is the first time these Sonardyne pressure sensors have been used in ocean physics, but they could be a game changer in how effectively we can measure the vast AMOC.  Once we know the speed of these currents, we can work out the volume of water being moved and then calculate how much heat is being transported,” said Dr Kristin Burmeister, SAMS oceanographer, co-chief scientist on the OSNAP cruise. 

Dr. Burmeister continued; “This heat is important to the climate of Europe and gives the continent its relatively mild weather. These currents directly impact our weather, particularly in the UK.  The influence of the AMOC on the Earth’s climate is so significant that there is an urgent need to better understand its movement, speed and heat transfer. That data will allow us to feed into the various climate models that help governments and society prepare for the changes in our climate in years to come.”

Geraint West, Head of Science at Sonardyne, said; “AZA is a game-changing technology as, previously, the need to calibrate pressure sensors meant that lengthy observations were compromised, limiting their use for long-term studies. The Ambient-Zero-Ambient (AZA) technique used in the Fetch AZA overcomes this by autonomously recalibrating in situ with an internal high accuracy barometer. This allows consistently accurate readings for up to 10 years.

“Mastering this technique took years of investment by Sonardyne and while it’s already been used, at scale, in other sectors, we are hugely excited to see it now being put into use in physical oceanography, not least in a project that will aid our understanding of key climate drivers.”

Posted by Abi Wylie Edited by Abigail Wylie, Editor and Copywriter experienced in digital media with a keen interest in ocean science technology. Connect

Latest Articles

Profile Spotlight: IQUA Robotics for Autonomous Underwater Survey & Inspection

IQUA Robotics is presenting its hovering AUV technologies on OST, providing precise, maneuverable platforms for subsea mapping, inspection, and reconnaissance

Nov 20, 2025
Precision Terrain Modeling & Hydrological Analysis with Global Mapper

Blue Marble Geographics’ Global Mapper enables Egis to streamline digital terrain modeling and hydrological analysis, enhancing data processing efficiency across large-scale environmental projects

Nov 20, 2025
Real-Time Vibration Analysis Embedded in SBG Systems IMU

SBG Systems’ IMU now features built-in vibration monitoring, delivering real-time analysis to enhance accuracy, detect resonance, and support design, testing, and structural monitoring

Nov 19, 2025
Kraken Robotics Forms Reseller Partnership to Expand Access to Subsea Sonar Technology

Kraken Robotics has appointed BlueZone Group as an authorized reseller of its SAS and KATFISH platform, offering high-resolution underwater imaging, bathymetric mapping, and rapid data collection for defense and commercial surveys in Australia and New Zealand

Nov 19, 2025
Monitoring Marine Environments with Pro-Oceanus Dissolved Gas Sensors

Discover how Pro-Oceanus Systems’ advanced sensors help explore the oceans, measure dissolved gases, and uncover critical insights into marine and climate processes

Nov 18, 2025
Strategic Partnership to Deliver High-Resolution Deep-Sea Seafloor Intelligence & Insights

PlanBlue and Orpheus Ocean have collaborated to integrate advanced AI-driven imaging with autonomous underwater vehicles, enabling enhanced monitoring and analysis of critical deep-sea environments

Nov 17, 2025

Featured Content

FarSounder Integration Delivers Real-Time Seafloor & Obstacle Detection to SYNAPSIS Users

FarSounder has integrated its Argos 3D Forward Looking Sonar with Anschütz’s SYNAPSIS navigation platform, bringing real-time subsurface insights directly into the (W)ECDIS NX interface

Nov 17, 2025
Boxfish ROV Captures Marine Research Footage for Upcoming Premiere

Scientists from the University of Tasmania used a custom Boxfish ROV to survey Beagle Marine Park, capturing underwater footage premiering on YouTube this November

Nov 12, 2025
SubC Imaging Observatory Camera Systems Support Long-Term Ocean Observation

SubC Imaging’s Observatory Camera Systems capture detailed subsea imagery for cabled ocean observatories, enabling continuous observation and long-term marine environmental studies

Nov 11, 2025