Uncrewed Surface Vessel Fleet to Research Hurricanes

The NOAA, predicting an 85% chance of an above-normal hurricane season, has partnered with Saildrone to send a USV fleet to aid understanding of how the storms form and intensify By Abi Wylie / 13 Aug 2024

Unmanned Surface Vehicles

Discover cutting-edge solutions from 8 leading global suppliers
SUPPLIER SPOTLIGHT
Uncrewed Surface Vessel Fleet to Research Hurricanes
Follow OS&T

Saildrone and the National Oceanic and Atmospheric Administration (NOAA) are sailing a fleet of uncrewed surface vehicles (USVs) into hurricanes, for the fourth year, to improve understanding of how these dangerous storms form, track, and intensify. 

The mission officially begins with 12 vehicles stationed in six operational areas identified by NOAA as having a high probability of intercepting a storm. 

With near-record warm ocean temperatures in the Atlantic Ocean, La Nina conditions developing in the Pacific Ocean, reduced Atlantic trade winds, and less wind shear, all of which tend to favor tropical cyclone formation, NOAA is predicted an 85% chance of an above-normal season. 

‍Saildrone Explorer USVs are 23 feet long and carry a payload of sensors to measure air, surface, and water temperature and humidity, barometric pressure, wind speed and direction, salinity, and wave height and period. 

To withstand major hurricane conditions—winds over 110 mph and waves that exceed 50 feet—they have a shorter and stronger “hurricane wing,” similar to a reefed sail on a sailboat.

Saildrone USVs sail autonomously along prescribed routes, which are defined by Saildrone Pilots according to weather conditions and to meet mission objectives. Saildrone’s science partners in the mission at NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) and Pacific Marine Environmental Laboratory (PMEL) will work closely with Saildrone Mission Control to guide the saildrones into oncoming hurricanes.

As SD-1045 sailed through Hurricane Sam in 2021, the data showed low surface salinity and unexpected warming of the ocean surface. Scientists believe that freshwater from the Amazon River may have kept the surface ocean warm, allowing heat to continue evaporating as energy, fueling the hurricane. 

During Hurricane Idalia in 2023, researchers saw a similar drop in salinity in the data from SD-1083: freshwater from the Mississippi River extended south into the Gulf of Mexico, where the storm passed over the USV. 

This year, scientists will continue to study how salinity affects hurricane rapid intensification, and in addition, two Saildrone Explorers will carry a sensor developed by NOAA for Saildrone USVs to measure how much carbon dioxide the ocean is absorbing from—or releasing into—the atmosphere.

One Saildrone Explorer went on mission early: Shortly after SD-1041 was deployed from St. Thomas, USVI, Hurricane Beryl began to form in the eastern Atlantic. SD-1041 was slated to begin a long transit to an operational area north of Puerto Rico, but scientists at AOML and PMEL requested that the USV be routed toward the storm. 

In less than 72 hours, this wind-powered ocean drone with a “reefed” wing sailed some 143 nautical miles to intercept the edge of the hurricane, where it measured winds gusting to 53 knots and waves nearly 8 meters tall.

As the final group of saildrones was readied for deployment, Tropical Storm Debby was forming in the Gulf of Mexico. Just days after SD-1057 was deployed, the USV sailed through the eye of Hurricane Debby hours before the storm made landfall in Florida.

Sailing on the surface of the water, Saildrone USVs provide crucial data at the interface between the ocean and the atmosphere. Researchers will coordinate data collection between Saildrone USVs, overflights by NOAA P3 Hurricane Hunter aircraft, and gliders below the surface. 

Coordinating these aerial, surface, and underwater assets provides scientists with a complete picture of the air and water column, from 10,000 meters (30,000 feet) above to 1,000 meters (3,000 feet) below the surface.

Powered solely by renewable wind and solar energy, the Saildrone fleet will stay at sea for the duration of the mission, which will last through October.

Greg Foltz, a NOAA oceanographer and one of the mission’s principal investigators, commented, “It’s not known how hurricanes affect the exchange of CO2 between the ocean and the atmosphere and how that impacts the global carbon budget. 

“If we can get one of these two USVs into a major storm, it would give us some of the first direct measurements of air-sea CO2 exchange inside a hurricane.”

Posted by Abi Wylie Edited by Abigail Wylie, Editor and Copywriter experienced in digital media with a keen interest in ocean science technology. Connect

Latest Articles

Real-Time Vibration Analysis Embedded in SBG Systems IMU

SBG Systems’ IMU now features built-in vibration monitoring, delivering real-time analysis to enhance accuracy, detect resonance, and support design, testing, and structural monitoring

Nov 19, 2025
Kraken Robotics Forms Reseller Partnership to Expand Access to Subsea Sonar Technology

Kraken Robotics has appointed BlueZone Group as an authorized reseller of its SAS and KATFISH platform, offering high-resolution underwater imaging, bathymetric mapping, and rapid data collection for defense and commercial surveys in Australia and New Zealand

Nov 19, 2025
Monitoring Marine Environments with Pro-Oceanus Dissolved Gas Sensors

Discover how Pro-Oceanus Systems’ advanced sensors help explore the oceans, measure dissolved gases, and uncover critical insights into marine and climate processes

Nov 18, 2025
Strategic Partnership to Deliver High-Resolution Deep-Sea Seafloor Intelligence & Insights

PlanBlue and Orpheus Ocean have collaborated to integrate advanced AI-driven imaging with autonomous underwater vehicles, enabling enhanced monitoring and analysis of critical deep-sea environments

Nov 17, 2025
FarSounder Integration Delivers Real-Time Seafloor & Obstacle Detection to SYNAPSIS Users

FarSounder has integrated its Argos 3D Forward Looking Sonar with Anschütz’s SYNAPSIS navigation platform, bringing real-time subsurface insights directly into the (W)ECDIS NX interface

Nov 17, 2025
Underwater Optical Communication Showcases 5.2 Gbps Transmission for Marine Applications

Kyocera has demonstrated a high-speed Underwater Wireless Optical Communication (UWOC) technology capable of transmitting data at 5.2 Gbps, enabling real-time, large-volume data exchange for underwater vehicles and ocean exploration

Nov 14, 2025

Featured Content

FarSounder Integration Delivers Real-Time Seafloor & Obstacle Detection to SYNAPSIS Users

FarSounder has integrated its Argos 3D Forward Looking Sonar with Anschütz’s SYNAPSIS navigation platform, bringing real-time subsurface insights directly into the (W)ECDIS NX interface

Nov 17, 2025
Boxfish ROV Captures Marine Research Footage for Upcoming Premiere

Scientists from the University of Tasmania used a custom Boxfish ROV to survey Beagle Marine Park, capturing underwater footage premiering on YouTube this November

Nov 12, 2025
SubC Imaging Observatory Camera Systems Support Long-Term Ocean Observation

SubC Imaging’s Observatory Camera Systems capture detailed subsea imagery for cabled ocean observatories, enabling continuous observation and long-term marine environmental studies

Nov 11, 2025